
AD-A156 059 R UICKLY TESTED PASCAL RANDOM NUMBER GENERATOR FOR I/i
MICROCOMPUTERS(U) MITRE CORP BEDFORD MR
C J COLWELL ET AL. MAY 85 MTR-9067 ESD-TR-84-202

UNCLASSIFIED F19628-84-C-0081 F/G 9/2 NLEElhEEEEE~liE
mhEEEEEEIIIEEE
ElIIIIIEEIIIEE
EIEEEIIEEE

,P., * , . . ,' ;-- - - -.

1.0 LU- 32.8w 1.5

11111 1.1 1 40 IIIIjQ.8

.°M

1.25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANtJAPDs 16 1 A

5, -& A**-..<.

*... .

M I C R O C O.N-A R

ESD-TR-84-202 MTR-9067

LX A QUICKLY TESTED PASCAL RANDOM NUMBER GENERATOR
0 "FOR MICROCOMPUTERS

[" ID

d C. J. COLWELL
R. A. DRAMSTAD

" I M. E. LOPEZ

MAY 1985

Prepared for

DEPUTY COMMANDER FOR AIRBORNE WARNING AND CONTROL SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

Hanscom Air Force Base, Massachusetts

'"': DTIC
LU $JLECTE I

L 0 5 1985

C..

Project No. 4110

,,,, ; ,, I ,,H2 , Prepared b%'

THE MITRE CORPORATION
Bedford, Massachusetts

Con t ac t No. F19628-84-C-000 I

[-.......................

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manulacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

DAVID R. HARRIS, 2Lt LOUIS D. MASIELLO
Software Engineer Deputy Director of Engineering

Deputy Commander for AWACS

FOR THE COMMANDER

CHARLES W. ALLPORT, Colonel, USAF
Assistant Deputy Commander for Airborne

Warning and Control Systems

% %

-4%

UNCLASSIFIED
SE CURITY CLASSIFICATICN OF THIS PAGE A-A . (0 5

..- REPORT DOCUMENTATION PAGE

is REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified

2. SECLRT' CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b OECLASSIFICATION DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MTR-9067
ESD-TR-84-202

*b NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
(I f applicable)

The MITRE Corporation

bc ADDRESS (CIt . State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Burlington Road

Bedford, MA 01730

8 NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

(see other side) YW F19628-84-C-0001

Sc ADDRESS Ity. State and ZIP Codel 10. SOURCE OF FUNDING NOS.

Electronic Systems Division, AFSC PROGRAM PROJECT TASK WORK UNIT

Hanscom Air Force Base, MA 01731-5000 ELEMENTNO NO. NO. NO

I1 TITLE n.ciude Secity Clasification, 4110
A QUICKLY TESTED PASCAL RANDOM (cont.)

12. PERSONAL AUTHOR(S)

Colwell, C. J., Dramstad, R. A., Lopez, M. E.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo., Day) 15. PAGE COUNT

Final FROM TO 1985 May 53

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS IContinue on reverse ifnecessary and Identify by block number)

FIELD GROUP SUB. GR. Microcomputers Random numbers

Pascal Random variate
Random normal variate

19 ABSTRACT rContinue on reverse of necessary and identify by block numbert

An assembly language subroutine that uses a shifting mask to generate pseudo-random
numbers has been written for use with Apple II microcomputer Pascal. The routine

is nearly 80 times faster than a direct Pascal multiplicative congruence scheme.
With the recommended starting parameters, the resulting stream has passed 10 dif-
ferent statistical tests for density and randomness. An efficient extension to the
normal distribution is also presented.

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFED/UNLIMITEO 3 SAME AS RPT F OTIC USERS C3 Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
(,include .Area Code 17

Diana F. Arimento (617)271-7454 Mail Stop D230

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

"-k :.i-.:i-.. .. .''. .': i'? "';> ,.:--.>- <..i iL - . -- ..-' " . ? .; * i.'- " .i '" " . - - " -. ', ,.: -- ',"-,- ~ ,

UNCLASSIFIED

* SECURITY CLASSIFICATION OF THIS PAGE

8a. Deputy Commander for Airborne Warning and Control Systems

11. NUMBER GENERATOR FOR MICROCOM(PUTERS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

- ~~~~. - 7 i " ... " o-. ;T

I.

ACKNOWLEDGEMENTS

This document has been prepared by The MITRE Corporation under
Project No. 4110, Contract No. F19628-84-C-0001. The contract is
sponsored by the Electronic Systems Division, Air Force Systems
Command, Hanscom Air Force Base, Massachusetts.

J/_..

-.

rrnrjjon Fot

NTIS C ,: /'

DI-7-

ii. .-

(%..

i i i-.-,

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1

2 IMPLEMENTATION NOTES 3

ENHANCEMENTS 5

EXTENSION TO THE NORMAL DISTRIBUTION 6

3 STATISTICAL TESTS 7

GENERAL 7

MEAN AND STANDARD DEVIATION 8

FREQUENCY AND KOLMOGOROV-SMIRNOV TEST 9

DISTRIBUTION OF RANDOM PAIRS 10

PERMUTATION OF RANDOM TRIPLETS 11

GAP TEST 12

"POKER" TEST 14

SERIAL CORRELATION TEST 15

RUNS TEST 17

4 DISCUSSION OF RESULTS 19

LIST OF REFERENCES 21

APPENDIX A PROGRAM LISTING 23

APPENDIX B LISTINGS OF TEST PROGRAMS 25

APPENDIX C FREQUENCY DISTRIBUTION AND KOLMOGOROV-SMIRNOV 45

TEST

APPENDIX D OBSERVED DISTRIBUTION OF RANDOM PAIRS 47

0v

-."- -- --

SECTION 1

INTRODUCTION

"An applied mathematician is a person that produces usable
algorithms."

J. B. Rosser, 1967

The generation of a deterministic series of variates with a
prescribed frequency distribution is a task of capital importance in
simulation work. Having access to a subroutine that generates a deter-
ministic stream of random uniformly distributed numbers is an essential
requisite in this task, since any computable distribution can be gener-
ated from such a stream of random numbers (Kahn, 1956).

The property of randomness, or random behavior, of any part of a
deterministic stream of random numbers rl, r2,...,rn is also a key
requirement. Due to the conflicting requirements of true randomness and
deterministic generation, computer generated random numbers are gener-
ally referred to as pseudo-random numbers.

There are many established techniques for creating a deterministic
stream of random numbers (Hull and Dobell, 1962). The purpose of this
paper is to present a technique that is fast, is suitable for small
microcomputers, and has passed a series of stringent statistical tests
for randomness.

Section 2 discusses the implementation of the program developed for
the Apple II computer which uses a 6502 microprocessor and listed in
appendix A. Section 3 presents the results of statistical tests on the
randomness of the stream generated when the recommended starting parame-
ters are used, and section 4 discusses the results.

o-

SECTION 2

IMPLEMENTATION NOTES

Smith's third principle: "Never do anything for the first

time.

The proposed random number generator is based on the work of
Tausworthe and on an algorithm suggested by Foster (1978); its
implementation depends on the data structure used for reals by the
microcomputer used. The Foster algorithm provides a technique for gen-
erating a fast random bit stream; the internal data structure of real
numbers in Pascal dictates where these bits should be stored. The
Tausworthe algorithm has been implemented as suggested by Foster
(ibid). A 32-bit long register is created initially using a pattern of
ones and zeroes from a combination of prime numbers. When a new random
number is needed and the leftmost bit of the pattern is a zero, the con-
tents of the register are shifted left one place and the carry bit is
rotated into the least significant bit (LSB) of the register. If the
leftmost bit is a one, an exclusive-or (XOR) operation is performed

first on the register using a 4-byte mask suggested by Foster; then the
contents of the register are shifted using the same technique.

In the present implementation, the exponent and sign bits were

initially set by making the real random number RNB in the calling pro-
gram equal to one. Usually, the exponent requires one byte and the signK one bit; therefore, only twenty-three bits are shifted using the process

-described above, leaving the eight exponent bits unchanged. This
creates a random number between one and two in the shifting register
that is later normalized in the Pascal program by subtracting unity from
it.

Real numbers in most microcomputers are stored using 32 bits or

four bytes. From the most significant to the least significant bit, a
real number is constructed of a single sign bit, an 8-bit excess 127
exponent field, and a 23-bit mantissa. There is also an implied bit,
set to 1, between the exponent and the mantissa; this means that all bit
patterns in a real number's mantissa are legal and normalized. An
explanation of this widely used real number format can be found in
Kellner (1980).

3

Since unit random numbers lie in the range from zero to unity, this
range includes many integer powers of 2, i.e., 0.5 or 2-1 0.25, or 2-2,
etc., so the exponents of all representable random numbers can rangej
over a fairly large interval. To avoid the complexities of normalizing
the mantissas and changing exponents, the random number was initialized .
to 1.0. This clears the sign bit and sets the exponent so that the
implied bit (with a zeroed mantissa) represents +20. Therefore, when
the lower 23 bits of the real number (the variable RNB in the listing,
section 2) are manipulated, any resulting combination yields a real

number in the range 1.0 to 2.0.

These manipulations must be conducted in assembly language unless
the computer can perform 32-bit logical operations. The one part that
can be done very efficiently in Pascal is subtracting 1.0 from the
assembly language-generated random number which brings RNB into the
desired range of zero to unity. This subtraction accomplishes both the
necessary normalization of the mantissa and the shifting of the expo-
nents of the received assembly language real number.

The way Pascal and assembly language are linked in the microcom-
puter affects the subroutine code. The proposed assembly language
routine RNUM deals with three four-byte data structures: first, the

32-bit masking register, MASK, which remains unchanged from one call to
RND to the next; second, the 32-bit feedback shift register, SEED, which
changes with each call and which must be preserved between calls; and
finally, the variable RNB that has to be accessed by both Pascal and the
assembly language routines.

In the Apple microcomputer, variables stored in assembly language
routines that use the .BYTE or .WORD directives are lost between calls
to the routine, a behavior analogous to that of local variables in
Pascal which are undefined at the start of the procedure's execution.
In order to initialize MASK, SEED, and RNB; to give the RNUM assembly
language procedure access to these variables; and to preserve their
values between various invocations, these variables must be defined as
global in the calling Pascal program. They are accessed by the assembly
language subroutine by using the host-coummunication directive .PUBLIC
(1980 Apple Manual, pp. 166-167). These external references must be
resolved by the Linker (1980 Apple Manual, pp. 186-193).

An important point is the initialization of the subroutine. Vani-
ous statistical tests, to be described in section 4, were used to select
the initial prime numbers for the SEED that would provide a stream with
the desired properties. The values

4

RNB = 1.0 MASK[O] = 83
SEED[O] = 97 MASKI] = 181
SEED[I] = 101 MASK[2] = 118
SEED[2] = 103 MASK[3] = 0

SEED[3] = 107

provided the best results and are recommended. If any of these numbers

are changed, prime numbers should be substituted. The efficient use
of subroutine calls and an extension to the normal distribution are

covered in the following enhancement notes.

ENHANCEMENTS

Two obvious enhancements are possible. The first one is to convert
the proposed routine into a library Unit (in Apple Pascal); the other is "
a randomization procedure to ensure a different start for the stream
each time the procedure is called.

It seems convenient to implement RND as a function inside a library
Unit residing in SYSTEM.LIBRARY (1980 Apple Pascal Manual, pp. 75-81).
In this way, the function RND could be used after including the Unit
name in a "USES" line at the start of the program (1980 Apple Pascal
Manual, p. 72). This yields two distinct advantages: implementation
details are hidden and the external routine is prelinked. The recom-
mended initializations could also be performed by the initialization
block of the Unit. Moreover, the variables RNB, SEED, and MASK would be
hidden in the implementation part of the Unit, as well as the external
subroutine RNUM. None of these routines would be accessible from the
host program, and only the function RND would remain visible due to its
inclusion in the interface part of the Unit.

As written in section 2, the function RND provides a repeatable
deterministic stream of pseudo-random numbers; that is, each time the
program is run, the same sequence of numbers is generated. This is not
necessarily a disadvantage, especially during the debugging stage when
duplicating previous results is desirable. Also, this repeatability
ensures that the generated stream has the desired statistical properties
(section 4). To obtain a random different starting point, the following
code could be used:

Procedure Rndize; (*equivalent to the APPLESTUFF procedure RANDOMIZE*)

VAR ch: char;

BEGIN

Writeln("Press any key to continue");
While nut KEYPRESS do RNUM;

READ(ch)

END; I
5

The only disadvantage of this routine is that it requires using the
"Applestuff" library Unit in order to use the function "KEYPRESS." This
is not a problem unless the function RND is also in a library Unit, when
nested "Uses" clauses would become necessary.

EXTENSION TO THE NORMAL DISTRIBUTION

The other very frequently required distribution is the random unit

normal. The following Pascal subroutine generates a unit normal random
deviate, RNORMAL. It assumes that the function RND is available, as
described in section 2.

REPEAT

U: = RND;
V: = RND;
X: = 1.715528*(V-0.5)/U;

RNORMAL: = X;
X2: = X *X:

IF(X2<=5 - 5.136102*U) THEN EXIT RNORMAL;

UNTIL(X2<=I.4+l.036961/U) AND (X2<=-4/LN(U));

This algorithm is recommended since it minimizes the need for com-
puting transcendentals and produces deviates that are more normally
distributed (especially at the tails) than those from the widely used
technique of averaging 12 random unit deviates. The average computing
time for one random normal deviate is approximately equal to that
required for executing 2.74 RND functions, 2.74 multiplications, 1.84
additions, .70 divisions, and 0.23 logarithms.

6

SECTION 3

STATISTICAL TESTS

"Nee Babylonios temptaris numero"
(Never trust random numbers)

GENERAL

Most random number generators cannot be adequately tested, even in
theory (Knuth, 1981). In practice, a stream of pseudo-random numbers is
generated, and selected "statistical tests" are conducted on the
stream. All quantitative attempts to qualify "random behavior" are dif-
ficult. ln fact, if too many tests are used and too strict a definition
of "randomness" is insisted upon, the surprising conclusion is that
there is no such thing as a truly random sequence! (Knuth, ibid.)
Wiener has emphatically stated that "the advantage of long runs of
statistics under widely varying conditions is specious and spurious."
For if one looks long and assiduously enough for the unusual, one is
bound to find it! Two goals are particularly important when testing
random number generators: first, to screen "bad" sequences early, and
second, to apply only those tests that are useful for the purposes that
the numbers will be used. In general, the objectives are to obtain a
stream that is both "dense" and "efficient." A great deal of the work
in this area is more art than science.

Knuth (1981) has discussed in detail the art of empirically testing
random numbers and has pointed out some examples of horrendously poor
random streams that are still widely used. In fact, the present paper
was motivated by the bad behavior of a random number generator; this bad
behavior was not discovered until some "unusual" results were obtained
in actual simulation work. Crigler and Shields (1982) (Naval Surface
Weapons Center) have adapted Knuth suggestions into a comprehensive
FORTRAN program that performs eleven different statistical tests. Some
of the tests used by Crigler and Shields (ibid) are very involved andin
view of Wiener' s dictum,probably redundant for most purposes.

We have chosen ten of the tests recommended by Knuth (ibid) that
are efficient and relatively easy to program. In order to interpret the
results of these tests properly, it is important to recognize that they
are applied to a finite-sized, albeit large, sample of outputs from our
"random number generator." Thus, even should the elements in the sample

7

7I

'-R. -K

I

APPENDIX A

PROGRAM LISTING

S

"f the applied mathematician is going to succeed, he must
from time to time turn temporarily into whatever sort of
scientist he is getting an answer for, and try out the
proposed algorithm to see if it is really usable."

J. B. Rosser, 1967

Following is a listing of an assembly language subroutine developed
for the Apple ii microcomputer. The program has been run successfully
and is approximately 80 times faster than a previous congruence program
written directly in Pascal. A description of the algorithm and other
pertinent implementation notes are presented in section 3.

.PROC RNUM,O

;RNUM is an Assembly Language subroutine to generate random numbers and
;pass them back to a Pascal calling program.

;The following algorithm was used*:

;First, seed a 32-bit-long shift register with a pattern of ones and
;zeros representing a prime number. If the leftmost bit is a zero then
;shift the contents of the register left one place, and rotate the carry
;bit into the least significant bit (LSB) of the random number. If the
;leftmost bit of the seed is a one take the exclusive-or of the contents
;of the shift register with a 4-byte mask suggested by Foster. (See
;Pascal calling routine.) Shift the contents of the register left one
;place and rotate the carry bit into the LSB of the random number.

;The exponent and sign bits were set by placing a 1.0 in the real number
;RNB in the calling program. Twenty-three bits were shifted into the 32
;bit random number leaving the sign bit and 8 exponent bits unchanged. S

;The random number RNB, the seed, and mask are all defined in the Pascal
;calling program and are shared with the assembly subroutine by use of
;the host-communication directive .PUBLIC. These external references
;must be resolved by the linker.

;*Foster, Caxton C., PROGRAMMING A MICROCOMPUTER : 6502, Reading,
;Massachusetts, Addison-Wesley Publishing Company, 1978.

23

S

LIST OF REFERENCES

1. Apple Pascal, 1980, "Language Reference Manual," Cupertino, CA:
Apple Computer Inc., pp. 209.

2. Bennet, C. A. and N. L. Franklin, 1954, "Statistical Analysis
in Chemistry and the Chemical Industry," NY: John Wiley and
Sons.

3. Crigler, J. R. and P. A. Shields, 1982, "Random: A Computer
Program for Evaluating Pseudo-Random Number Generators," Tech
Rep NSWC TR-82-93, Alexandria, VA: Defense Tech. Info. Center,

pp. 40 , (AD A118 412).

4. Foster, Caxton C., 1978, "Programming a Microcomputer,"
Reading, MA: Addison-Wesley.

5. Hull, T. E. and A. R. Dobell, 1962, "Random Number Generators,"
Society for Industrial and Applied Mathematics, Vol. 4, pp. 230-254.

6. Kahn, Hermann, 1956, "Applications of Monte Carlo,"
RM-1237-AEC, Santa Monica, CA: The Rand Corp., pp. 259.

7. Kellner, J., 1980, "Pascal Operand Formats or the Secret Life
of a Variable," The Apple Orchard, Oct. 1980, pp. 38-40.

8. Knuth, D. E., 1981, "The Art of Computer Programming, Vol 2:
Seminumerical Algorithms," Reading, MA: Addison-Wesley,
pp. 688.

9. Levene, H. and J. Wolfowitz, 1944, "Asymptotic Distributions of
Up and Down Runs," Annals Math. Statist., Vol. 15, pp. 58-69.

10. Owens, D. B., 1967, "Handbook of Statistical Tables," Reading,
MA: Addison-Wesley, pp. 580.

11. Wald, A. and J. Wolfowitz, 1943, "An Exact Test for Randomness
in the Non-Parameteric Case Based on Serial Correlation,"
Annals of Math. Statist., Vol. 14, pp. 378-388.

2 1.°.

SECTION 4

DISCUSSION OF RESULTS

The proposed random number generator has passed all the statistical
tests to which it has been subjected. It is also very fast, approximately
80 times faster than the congruence multiplicative Pascal subroutine that
it replaced. A multiplicative congruence method with a decently long
period requires double precision multiplications, which is aslow process in
microcomputers, when possible at all. The proposed assembly language
subroutine uses only bit manipulations which involve shifts and only
one Pascal addition, so it is implemented in a very efficient manner.

Of all the tests employed, the frequency and serial correlation
tests are considered the "weakest," in the sense that most random number
generators usually pass these tests. The runs test, as well as those
tests that use nonparametric statistics, are considered the strongest.
One may question the need for so many tests; this is, indeed, a valid
question. In fact, it has been suggested (Knuth, 1981) that more
computing time is usually spent testing random number generators than
using them! However, the need for an exhaustive series of tests for
random number generators that will be used in simulation work involving
thousands and even millions of repetitions is well documented (Knuth,
ibid). If one can prove that the program to be used is robust with
respect to the quality (randomness) of the number stream and achieve
this robustness with a fast generation, then the time spent in the
testing was worthwhile.

19

Expected number of runs = 5000.5

Expected standard deviation = 28.869
Observed number of "up" runs - 4995
Observed number of "down" runs = 5031

Zup = (Exp - Obs)/Sdev = 0.1905

Zdown = (Exp - Obs)/Sdev = 1.0565
Probability of chance occurrence for Zup = 0.8490

Probability of chance occurrence for Zdown = 0.3908

L

The results for run lengths, using the modified runs technique were

RUN EXP UP OBS UP EXP DOWN OBS DOWN

1 1856.0 1903 1852.5 1892
2 1237.3 1216 1235.0 1230
3 464.0 443 463.1 420
4 123.7 127 123.5 131
5 25.8 18 25.7 25

6 5.2 5 5.1 7

Degrees of freedom = 6
Chi-square Up runs = 4.9461

Chi-square Down runs 6.0224
Probability of chance occurrence Up runs = 0.5507

Probability of chance occurrence Down runs = 0.4207.

Hence, the random number generator proposed here passes the runs

test handily.

18

RUNS TEST

A sequence of random numbers may be tested for the number and
I length of "runs up" and "runs down." In order to clarify the concept,

consider the sequence of ten numbers

11 2 91 181 I51 13 6 71 10 41

which displays a run "up" of length 3, followed by two runs of length 1,
followed by another run of length 3, followed by a run of length 2.
When estimating the probabilities of expected run lengths, Levene and
Wolfowitz (1944) showed that a simple chi-square test cannot be applied
to the discrepancies between observed and expected lengths since a long -
run is more likely to be followed by a short one, or, in other words,
there is serial correlation between runs of different lengths. The
exact test is horrendously complicated. However, Knuth (1981) has shown
that if the number that breaks a run is simply thrown out, a chi-square
test can be applied to the discrepancies. Since there is an ample
supply of random numbers, we have chosen to implement the vastly simpler
test that uses these modified runs, rather than the much more complex
test that uses all the numbers. If the number that breaks a run is
thrown out, the probability of a run of length R is

Prob of run =R = /RI -1/(R+1)!

Since this probability decreases very rapidly with R, the test was
implemented using runs of one through five consecutive up (or down) num-
bers, and runs of length greater or equal to six were grouped together
into a single category. The probability of a run of length greater than
or equal to R is simply 1/RI.

A preliminary test should consider the expected number of runs.
The probability of the number of runs, when all numbers are used, is a
normally distributed variate with parameters (for N-10,000),

Mean E(R) =(N+1)12 5000.5

Var(R) 833.42

The results of the runs test for the number of runs (up and down),
using all available random numbers were

17

Mean E(Rh) (SI-S2)/(N-1)

Var(Rh) (N-I)-I[S2-S4 + (N-2)-I(Si-4 SIS2 + 4 SlS 3 + S2-2 S4)

-(N-I)-' (S I-s2)21

where

9972
Sk= uik

i=O

is the kth power sum of the observations. Wald and Wolfowitz (ibid)
have shown that Rh approaches the unit normal distribution for large N.
Hence, the random variable

Zh = [Rh-E(Rh)] [Var(Rh)] - 1/ 2

has a normal distribution with zero mean and unit standard deviation.
This test is nonparametric in the sense that it does not depend on the

assumption that the ui's are uniformly distributed. The results of this

test were

Expected values of Corr Sums 2467.97

OBSERVED PROB OF CHANCE
LAG CORR SUMS Zh OCCURRENCE

1 2463.82 0.5044 0.6140
2 2463.78 0.5094 0.6105
3 2466.97 0.1215 0.9033

4 2459.60 1.0172 0.3090
5 2481.29 -1.6180 0.1057
6 2468.77 -0.0976 0.9222
7 2469.30 -0.1612 0.8719
8 2469.73 -0.2136 0.8308
9 2466.63 0.1631 0.8704

10 2459.93 0.9767 0.3287

Therefore, the proposed random number generator passes the serial cor-
relation tests with up to 10 lags.

16

The variate

5
x (- Oi) 2 /Ei

1=1

should be approximately distributed as a chi-square variate with 4
degrees of freedom. The results from this test were

I OBS EXP DIFF

1 0 3.2 3.2

2 182 192.0 10.0
3 995 960.0 35.0
4 733 768.0 35.0

5 90 76.8 13.2

Degrees of freedom = 4

X 2 = 8.861
Probability of chance occurrence f 0.1816

SERIAL CORRELATION TEST

Consider a series uo, ul,...,uN_1 of random numbers. To check if

this sequence is correlated in any way at equal intervals spaced h units
apart, the serial correlation of the series can be obtained for various
lags and tested against expectations. Serial correlation can be defined
for the circular and noncircular cases (Bennet and Franklin, 1954).
Only the noncircular test was applied. In the noncircular test, values
ui+h>=N are simply omitted, and only the serial correlation between the
remaining pairs tested. Since N is very large, this is not a serious
shortcoming. The test for serial correlation, originally developed by
Wald and Wolfowitz (1943), requires that N be a prime number. The

largest number available for the test is N=9973. Only lags from 1
through 10 were tested, since most of the important lags in simulation
work are smaller than 10. Thus, the first 9973 numbers in the random
sequence were used to compute the statistic

Rh ui ui+h • (hf1,2,...,I0)
i (i=O,1,...,9972)

The mean and variance of the random variable Rh are, respectively,
(Criegel and Shields, 1982),

15

"POKER" TEST

This test is conducted by dividing the N real numbers into N/5
groups of successive integer quintuples. Each five successive real
numbers were converted into five integers using the scheme

I if 0 <ui<_O. 2

2 if O.2 <ui<0.4

3 if 0.4 <ui<0.6

4 if 0.6 <ui<0.8

5 if 0.8 <ui<l.o

Each quintuple was then classified into a "poker" hand,

• Five different = all numbers different

Four different = one pair

Three different = two pairs, or three of a kind

Two different = full house, or four of a kind

One different = five of a kind.

SThe probability of each case can be derived using the Stirling num-
- bers of the second kind (Crigler and Shield, 1982). The probabilities

are

Pl = 1/625 = 0.0016

P2 = 12/125 = 0.096

P3 = 12/25 = 0.48

P4 48/125 0.384

P5 = 24/625 = 0.0384

Note that the sum of all the probabilities is unity, as it should be.

Let

• Ei = N Pi expected number of quintuples in the ith category

01 = observed number of quintuples in the ith category.

14

0-

-:V~~~~- zr 9. .P'J I.W1 - 7.W - 7

Let

Pr probability of a gap ot length r (0<r~t)

pt =probability of a gap of length to or greater than t.

Then

Pr = PO -)r (0(r~t-1)

Pr = (1 -pt r =t

If the stream is random, the variate

2 t
= (Zr n pt)2/(n pt)

r=0

is distributed as a chi-square random variate with t degrees of free-
dom. For the test, the values

a = 0.3
8- 0.6

t = 8

were selected following Crigler and Shields (1982). The results for the
test were

LENGTH FREQ EXPECTED DIFF

0 919 909.6 -9.4
1 627 636.7 9.7
2 472 445.7 -26.3
3 309 312.0 3.0
4 192 218.4 26.4
5 172 152.9 -19.1
6 95 107.0 12.0

O7 72 74.9 2.9
8 174 174.8 0.8

Degrees of freedom -8
2-8.8731

Probability of chance occurrence =0.3531

13

is approximately distributed as a chi-square random variable with 5
degrees of freedom. For this particular test, Ei = 3333/6 = 555.5.

The results of the test were

TRIO FREQ DIFF

(123) 552 3.5
(132) 556 -0.5

(213) 574 -18.5
(231) 544 11.5
(312) 564 -8.5

(321) 543 12.5

Degrees of freedom = 5
X 2 = 1.288

Probability of chance occurrence = 0.9361

GAP TEST

This test examines the lengths of "gaps" between numbers that fall

into some prespecified range. A chi-square test, similar to the one
used in the frequency test, is then used to check whether the differences
between observed and expected number of occurrences in the preselected
gaps could be expected by chance alone.

Let a and 8 be two numbers such that O<a<0<I. Consider the
sequence of random variates uo, U1,.,UN I as a cyclic sequence in
which uN+j is identified with uj. Consider next the lengths of
consecutive sequences uj+0, uj+l,...,uj+r in which uj+r lies between a
and , but the other u values do not. Such a subsequence defines a y&p
of length r. If n of the N numbers uo, u1,...,uN-1 fall in the range

*. <uj< , then there are n gaps in the cyclic sequence. Let

Zr = number of gaps of length r, O<r<t

Zt number of gaps of length t or greater

p = probability that c<uj<a.

Then

p -a

12

pair determines a location (bin) on a 10 X 10 matrix. If the pairs are
random and uniformly distributed, each bin would be expected to fill
with the same number of pairs of points. Let

Ei,j = expected number of time the integer
pair ij occurs = 100

Oij observed number of times the integer
pair ij occurs.

Then the variate

9 9
X2 (Ei,j Oi,j)2/Ei,j

i=0 j=O

is approximately distributed as a chi-square variable with 99 degrees of
freedom. The results from this test were

Degrees of freedom = 99

X 2 = 88.0
Probability of chance occurrence = 0.5088

The observed distribution of pairs is presented in appendix D.

PERMUTATION OF RANDOM TRIPLETS

In this test the random integer numbers obtained in the
previous test are grouped into triplets according to a fixed rule.
There are six different combinations for three numbers A, B, and C, whenA,
B, and C are ordered according to their absolute value: (A,B,C),
(A,C,B), (B,A,C), (B,C,A), (C,A,B), and (C,B,A). Let

Ei = expected number of triplets in the ith category

1= observed number of triplets in the ith category

if each number is as likely to occur as any other, then the test variate

6
S= E (Ei - Oi)2 /Ei

. .11

*o...............................
, .. .'. '. . ..".. " .. .".. ."... . ".. --.. .-..-..-..-...-.-.. - '." . -. ".. " ,.,.% ' ' '.' .'''_,

.-. .. ". .c ."_ , ' " , " , . ,#, ,,, :- ' ,,- . , .,.

.

Pi = probability that an observation falls into the ith bin

Ei = expected number of observations in the ith bin

01 = observed number of observations in the ith bin.

Then the variate

100 100

X= (Ei - Oi)2/Ei = Z (100 - 0i)2/100

is approximately distributed as a chi-square random variable with 99
degrees of freedom. The results of the test were

Degrees of freedom = 99

" 2 =115.86
Probability of chance occurrence = 0.1184

The Kolmogorov-Smirnov test has the virtue that it is a distribution-

free test. If the observed cumulative distribution for the selected 100
bins is calculated, the differences between the observed cumulative
distribution and the expected theoretical distribution (the frequency at
each successive bin should simply increase by 10,000/100 = 100 variates)
can be calculated. The Kolmogorov-Smirnov test estimates the probabil-
ity of obtaining a discrepancy as large as the largest discrepancy found
between expected and observed cumulative distributions (Owens, 1967).
The results of this test were

Max observed discrepancy = 0.0061
Probability of chance occurrence = 0.5249

Therefore, the proposed stream passes both the frequency and the
Kolmogorov-Smirnov test. The listing of observed frequencies is pre-

sented in appendix C.

DISTRIBUTION OF RANDOM PAIRS

This test is designed to determine if successive pairs of random
numbers are uniformly and independently distributed. The sequence of N
random numbers is converted into a sequence of random integers from 0 to
9, inclusive, by multiplying all the numbers by 10 apd truncating the

.. result. The resulting random integers are grouped into pairs, and each

10

0)

. . .

moments, however, are particular]- important so these should be the
first tests applied to a stream. A unit random distribution has a theo-
retical mean of 0.5 and a variance of 1/12 (Knuth, 1981). For large
values of N, the variates

Zm = (Mean - 0.5)(12 N) 1/2

Zsd = (St Dev - 0.2887)(24 N)'1 2

are normally distributed with zero mean and unit variance. Since
positive and negative departures from the expected values are equally
likely, two-tailed normal tests were applied to Zm and Zd. The values
obtained were

Expected Mean = 0.5

Observed Mean = 0.4977
Diff = 0.0023
zm = 0.7978

Probability of chance occurrence of zm = 0.4250

Expected St Dev = 0.2887

Observed St Dev = 0.2875
Diff = 0.00113

Zsd = 0.5542

Probability of chance occurrence of Zsd = 0.5795

The proposed generator passes the mean and standard deviation tests.

FREQUENCY ND KOLMOGOROV-SMIRNOV TEST

These two tests examine the expected frequency distribution of the
random numbers by sorting them into frequency bins. These two tests are
usually tabulated together since it is convenient for the formatting of
the results. The frequency test is probably the test most commonly
applied and one that most random number generators pass handily. The
unit range between zero and unity was divided into 100 equally spaced
frequencies, and the generated random numbers were distributed into

these 100 frequency bins. Let

9

--. -< ' 'T. .".... , , - . --...-.-.. .--..-.. ..-.- '. .. ".... . . .,".-, ,,L-';= -

have been produced by a perfect random numbe-r generator, the fact that
the samples are of finite rather than infinite size makes it unlikely
that the test expectations will be met perfectly. In fact, it would be
a most unusual occurrence if they did. Suppose, however, that for each
test it is possible to calculate a certain test statistic "z" which has
a known theoretical probability distribution for a perfectly random
stream of numbers. If the probability of occurrence of the "z" calcu-
lated from the sampled stream under test is reasonably high, one can be
confident that the number generator used is also reasonably random, as
far as this particular test is concerned. What might be considered
reasonably high"? The answer depends on the application intended for
the random numbers. A widely accepted criterion in simulation work is
that a probability of five percent or less for the occurrence of "z" is
too low. Therefore, in what follows, the result of a test will be con-
sidered acceptable if the probability of occurrence of the test statis-
tic that accompanies the test exceeds 0.05. This is equivalent to
accepting that the observed discrepancies between actual and expected
values in the test were due to unavoidable chance fluctuations due to
sampling.

The most commonly used test statistics have either a normal or a
chi square (X2) distribution and their probabilities of occurrence can
be readily computed. As an example, the five percent limit for a unit
normal distribution (zero mean and unit standard deviation) is z = +1.96.

Therefore, in all the tests that follow, the expression "probability of
chance occurrence" is equivalent to the probability that the observed stream
could have occurred at random from the output of a perfect random number
generator. If this probability is greater than five percent, we are willing
to accept the stream. One must keep in mind, however, that at this accep-
tance level, five percent of the streams from even a perfect random number
generator would have been rejected. For this reason, it is unwise to reject
a random number generator for an occasional failure to pass a test at a

*specified significance level.

The various tests that were applied will be discussed only briefly.
For those interested in the details, Knuth (1981) and Crigler and Shields
(1982) can be consulted. The Pascal program used in the testing is listed
in appendix A so that other users may have access to it. All the tests were
performed using N=10,O00 random deviates unless stated otherwise.

MEAN AND STANDARD DEVIATION

These tests (actually two separate tests that "go" together) are

applied as a check on the correctness of the expected moments of the
distribution rather than to test its randomness. The first and second

84

.PUBLIC RNB,SEED,MASK
LDX #7 ;# OF BITS TO BE SHIFTED INTO RNB+2
LDA #0 ;CLEAR ACCU1MULATOR
STA TEMP ;CLEAR STORAGE LOCATIONS
STA RNB
STA RNB+1

LOOP 1 JSR GETCBIT ;GO TO GETCBIT
ROL TEMP ;PUT CARRY BIT IN LSB OF TEMP
DEX ;DECREMENT X
BNE LOOPI ;SHIFT 7 BITS INTO TEMP
LDA RNB+2
AND #080 ;SAVE EXPONENT BIT IN RNB+2
ORA TEMP ;COMBINE IT WITH TEMP
STA RNB+2 ;STORE IN RNB+2
LOX #8 ;# OF BITS TO SHIFT INTO RNB+1

LOOP 2 JSR GETCBIT
ROL RNB+1 ;STORE 8 BITS IN RNB+1
DEX
BNE LOOP2
LDX #8 ;RESET COUNTER FOR RNB

LOOP 3 JSR GETCBIT
ROL RNB ;STORE 8 BITS IN RNB
DE X
BNE LOOP3
RTS ;RETURN TO CALLING PROGRAM

GETCBIT LDA SEED+3 ;TEST LEFTMOST BIT OF SEED
BPL SHFT ;IF 0 GO TO SHFT
LOY #3 ;ELSE

EORLOOP bOA SEED,Y
EOR MASK,Y ;EOR SEED WITH MASK AND
STA SEED, Y ;STORE THE RESULTS BACK IN SEED
DEY ;REPEAT FOR EACH OF 4 BYTES OF
BPL EORLOOP ;MASK AND SEED
JSR SHSEED ;GO TO SHSEED
SEC ;SET CARRY BIT TO 1
RTS ;RETURN TO LOOPX

SHFT JSR SHSEED
CLC ;SET CARRY BIT TO 0
RTS

SHSF"I ASL SEED ;SHIFT 4 BYTES OF SEED LEFT ONE BIT
ROL SEED+1
ROL SEED+2

*ROL SEED+3
RTS ;RETURN

TEMP .BYTE ;BYTE OF TEMPORARY STORAGE
- . .END

24

APPENDIX B

LISTINGS OF TEST PROGRAMS

(* $S+*)
PROGRAM TESTR; (*28 FEB 1983 ALL TESTS EXCEPT RUNS TEST*)

USES TRANSCEND;

NFREQ,NF,NT,NGAPS,CNT,N,PAIR,TRIO,POK,I,TJ,PDIF,F,
ROW,COL,MAXPRI4E ,TPAIR,TTRIO,TPOK,TFREQ,TSER: INTEGER;
X,S1,52,53,S4,RNB,z1,z2 :REAL;
NUMPOK,SPOK :ARRAY[1. .5] OF INTEGER;
SFREQ :ARRAY[O..99] OF INTEGER;t
SSER :ARRAY[1..1OJ OF REAL;
PERMl :ARRAYf1. .3] OF REAL;
SPERM :ARRAYjI..6J OF INTEGER;
XSER :ARRAYjO..1O] OF REAL;
SGAP :ARRAYjO..8] OF INTEGER;
SPAIRS :ARRAYjO..9,O..9] OF INTEGER;
SEED,MASK :PACKED ARRAAY[O..3] OF O..255;
PR :TEXT;

PROCEDURE RNUM; (*GENERATES RND, A RANDOM UNIT VARIATE*)
EXTERNAL;

FUNCTION R&D: REAL;
BEGI N

* RNUM;
RND:=RNB-1.O

END;

FUNCTION GNORMAL (Y:REAL):REAL; (*COMPLEMENT OF THE NORMAL PROB*)
* VAR T,Q:REAL;

BEGIN
T:=1/(1+O.33267*ABS(Y));
Q:= O.3989422*T*((O.937298*T-O.12O1676)*T+O.4361836);
Q:=.LN(Q)-O.5*Y*Y;
IF Q>-87 THEN Q:-EXP(Q) ELSE Q:=O;
IF Y>O THEN CNORMAL:=Q ELSE CNORMAL:=1-Q

END;

25

FUNCTION PROB(G,Z :REAL) :REAL; (*PROB OF CHI-SQUARE*)
VAR N, I:TNTEGER;

S ,T ,X , YREAL;

BEGIN
IF G<30 THEN

- .. BEGIN

* N:=TRUNC(G);

IF G-N>O THEN
BEGIN
I=O

X:-Z+Z;
Y:'-SQRT(X);
IF N>O THEN
BEGIN
WHILE I<N DO
BEGIN
I:=I+I;
S:=S+T;
T :=T*X/(I+1+1);

END;
S:=LN(S*Y)-Z-0. 225791;
IF S>-87 THEN S:=EXP(S) ELSE S:=O;

END;
PROB:=2*CNORMAL (Y)+S;

END
ELSE

BEGIN

WHILE I(N DO
* BEGIN

S:=S+T;

END;
S :=LN(S)-Z;

S IF S>-87 THEN PROB:-EXP(S) ELSE PROB:0O;
END;

END
ELSE

BEGIN
T:=9*G;
X: =(EXP(LN(Z/G)/3)-1+1/T)*SQRT(T);
X:+X+(((0.009191*X-0.OO4772)*XO0.O26B68)*X+0.OO

4 45)/G;

26

PROB:=CNORMAL(X);
END

END;

PROCEDURE INITIAL; (*SETS INITIAL PARAMETERS*)
VAR I,J,N:INTEGER;

BEGIN
RNB:1I.O;
SEED[O] :97;

SEED[31 :=107;
SEED[1:=1O1;
SEEDI2I :=103;
MASK[O] :=83;
MASK(11: :=181;
MASK[2] :=118;
MASKj3] :=O;
NGAPS:=O;
CNT:0O;
PAIR:=1;
TRIO: =1;
POK:1l;

S1:-O; '~i
S2:=O;

N; =NFREQ-1;
FOR I:-0 TO N DO SFREQfII=O;
FOR I:=1 TO 5 DO SPOK[I]:=O;
FOR I:=l TO 10 DO SSERj1fl=O;
FOR 11=1 TO 6 DO SPERM[I]:=O;
FOR I:=O TO 8 DO SGAPfIJ:=O;
FOR I:=O TO 9 DO FOR J:=O TO 9 DO SPAIRS (I,JJ:=O I..

END;N

PROCEDURE MOMENTS(J:INTEGER;Y:REAL); (*COMPUTES THE FIRST 4 MOMENTS *
VAR Z:REAL;

BEGIN
ZI:sZl+Y;

Z:=Y*Y;S
Z2 :=Z2+Z;
IF J<MAXPRIME THEN

27

7 1 1 1 W

BEGIN
S1:=ZI;
S2:=Z2;
Z :=Z*Y;
S 3: =S3+Z;
S4:=S4+Z*Y;

END
END;

PROCEDURE SERIAL(J:INTEGER;Y:REAL); (*OBTAINS SERIAL CORRELATION SUMS*)
VAR I: INTEGER;

Z :REAL;

BEGIN
IF J<10 THEN XSER[J]:=Y ELSE

BEGIN
XSER[10] :=Y;
Z:=XSER[O];
FOR I:=1 TO 10 DO

BEGIN
SSER[I] :=SSER[I]+Z*XSER[il;
XSER[I-i] :=XSERf I];

END;
END)

END;

PROCEDURE GAPS(Y:REAL);
(*COUNTS HOW MANY CONSEC VARIATES FALL BETWEEN 0.3 AND 0.6*)

BEG IN

Lo IF (Y<0.3) OR (Y>0.6) THEN CNT:=CNT+1
ELSE

BEGIN
NGAPS:=NGAPS+1; (*UPDATE NUMBER OF GAPS*)
IF CNT>7 THEN CNT:=8;
SGAP[CNT] :=SGAP[CNT]+1; (*UPDATE SUMS*)

* CNT:=O;
END

END;

PROCEDURE POKER(P:INTEGER); (*COUNTS VARIOUS POSSIBLE POKER HANDS*)
VAR J,KM,L :INTEGER;

BEG IN

NURPOK[POKI :=P;

28

POK:=POK+1;
IF POK=6 THEN

R EGIN
PDIF:=l; (*NUMBER OF DIFF DIGITS*)

REPEAT
K:=NUMPOK[J];

IF M=J THEN PDIF:=PDIF+1;
J:=J+1;

UNTIL J>5;
SPOK[PDIF] :=SPOK[PDIF]+l; (*UPDATE POKER SUMS*)
POK:=1;

END
END;

PROCEDURE HEADING; (*PRINTS HEADINGS*)
VAR I: INTEGER;

BEG IN
WRITE(PR,CHR(ORD(12))); (*ADVANCE ONE PAGE)
FOR I:=1 TO 3 DO WRITELN(PR);
WRITE(PR,GHR(ORD(14))); (*DOUBLE WIDTH*)
WRITELN(PR,' TESTING A UNIT RANDOM4 NUMBER GENERATOR');
WRITELN(PR);
WRITELN(PR,'THERE ARE ',NT:5,' RANDOM VARIATES AVAILABLE');
WRITELN(PR)

END;

PROCEDURE UNDRLNON; (*UNDERLINE MODE ON *
BEGIN

WRITE(PR,CHR(ORD(27)),CHR(ORD(45)),CHR(ORD(1)))
END;

PROCEDURE UNDRLNOFF; (*UNDERLINE MODE OFF*)
BEGIN
WRITE(PR,GHR(ORD(27)),CHR(ORD(45)),CHR(ORD(O)))

END;

PROCEDURE MNSDTEST; (*TESTS MEAN, SDEV OF DISTRIBUTION AND KOU4000ROFF TEST*) I
VAR I:INTEGER;

MN, SD, TM, TD: REAL;

29

BEGIN
HEADING;
UNDRLNON;
WRITELN(PR,'TEST OF OBSERVED MEAN AND 5STD DEV OF DISTRIBUTION');
UNDRLNOF F;
FOR I:=1 TO 3 DO WRITELN(PR);
WRITELN(PR,'N=',NT:5,' VARIATES USED');
WRITELN(FR);
WRITELN(PR);
NN:=Z 1/NT;
SD:=SQRT(Z2/NT-MN*MN);
TM:=(O.5-MN)*SQRT(12.O*NT);
TD:=(O.288675-SD)*SQRT(24.O*NT);
WRITELN(PR, 'EXPCT MEAN=O. 5000');
WRITELN(PR,'OBSVD MEAN=',MN:6:4);
WRITELN(PR,' DIFF=',(O.5-HN):6:5);
WRITELN(PR,' T=' ,TM:6:4);
WRITELN(PR, 'PROB OF CHANCE OCCURRENCE=' ,2*CNORMAL(ABS(TM)):6:4);
FOR I:=1 TO 3 DO WRITELN(PR);
WRITELN(PR, 'EXPECT SDEV=O.2887');
WRITELN(PR, 'OBSVD SDEV=' ,SD:6:4);
WRITELN(PR,' DIFF=',(O.288675-SD):6:5);
WRITELN(PR,': T=';TD:6:4);
WRITELN(PR,'PROB OF CHANCE OCCURRENCE=',2*CNORMAL(ABS(TD)):6:4);

END;

PROCEDURE FREQICDLTEST; (*PERFORMS A FREQCY CHISQ AND KOU4-SMRNOV TEST*)
VAR I,LO,HI :INTEGER;

SUMFRQ,CUM,EXPFRQ,DIF,MAX,CHI,EXPCUM,KOL,PRB :REAL;

BEGIN
CHI:=O;
SUMFRQ:=O;
MAX:=O;
EXPFRQ: =NT/NFREQ;
EXPCUM:=O;
LO:=O;
REPEAT

HI:=NFREQ-1;
IF HI-LO>33 THEN HI:=LO+33; (*BREAKS TABLE INTO READABLE FORMAT*)
HEADING;

- .. UNDRLNON;
WRITELN(PR,'FREQUENCY DISTRIBUTION AND KOIOGOROFF-SMIRNOV TEST');
UNDRLNOFF;
FOR I:=1 TO 3 DO WRITELN(PR);
WRITELN(PR,NT:5,' VARIATES ARE DISTRIBUTED INTO' ,NFREQ:4,' BINS.EXPECTD');

* - WRITELN(PR,' FREQUENCY IS ',EXPFRQ:5: 1,' ."DIF"=EXPCTD-ACTUAL FREQUENCY'):

30

A4

WRTTELN(PR,-KOL" IS THE DIFF BETWEEN EXPCTD AND ACTUAL CUMUL FREQUENCY-);
WRITELN(PR);

*-WRITELN(PR,- BIN OBS DIF CUM KOL');
FOR I:=LO TO HI DO
BEGIN

DIF:=EXPFRQ-SFREQ[11;
CHI : CHI+DIF*DIF;
SUMFRQ:=SUMFRQ+SFREQ(I];.
EXPCUM: =EXPCUM+EXPFRQ;
CUM: -SUMFRQ/NT;
KOL:-(EXPCUM-SUMFRQ) /NT;
IF ABS(KOL)>MAX THEN MAX:=ABS(KOL);
WRITELN(PR,I:5,SFREQ[II:,DIF:6:1,CUM:8:4,KOL:8:4);

END;
LO:=HI+l;

UNTIL LO=NFREQ;
FOR 1:=l TO 2 DO WRITELN(PR);

* CHI:=CHI/EXPFRQ;
WRITELN(PR,-DEGREES OF FREEDOM-',NFREQ-1:3,(CHISQUARE=',CHI:8:2);
WRITELN(PR,-PROB OF CHANCE OCCURRENCE-&,PROB((NFREQ..1/2.O,CHI/2.O:5:4);

*FOR 1:=l TO 2 DO WRITELN(PR);
WRITELN(PR,-MAX KOLMOGOROV-SMIRNOV DIFF=',AX:6:4);
PRB :=2 . O*1AX*MAX*NT;
IF PRB>-87 THEN PRB:=1-EXP(PRB) ELSE PRB:=1.O;
WRITELN(PR,-PROBABILITY OF CHANCE OCCURRENCE-',PRB: 5:4)
END;

PROCEDURE GAPTEST;
VAR I:INTEGER;

CHI,P,Q,T,EXPCT,DIF,PRB:REAL;

BEGIN
HEADING;
CHI :0;
P :0.3;
Q: 0. 7
T:1 .0;
UNDRLNON;
WRITELN(PR,-GAP TEST-);
UNTDRLNOFF;
FOR I:=1 To 3 DO WRITELN(PR);
WRITELN(PR,-THE NUMBER OF CONSECUTIVE RND VARIATES THAT FALL OUTSIDE;);
WRITELN(PR,-THE RANGE (0.3-0.6) FORM THE "GAPS". GAPS LONGER THAN 7 FORM-);
WRITELN(PR,-THE CATEGORY OF >7: OR-8. THE CUMULATIVE SUMS OF GAP RUNS FROM');
W4RITELN(PR,-0 THRU 8 ARE UPDATED AND THEIR ACTUAL FREQ IS COMPARED WITH-);
IRITELN(PR,-THE THEORETICALLY EXPECTED FREQUENCY FOR A CHISQUARE TEST-);
WRITELN(PR);

31

WRITELN(PR,'LTH FREQ XPCTD DIFF');
FOR I:=O TO 8 DO

BEGIN
IF [<8 THEN PRB:=P*T ELSE PRB:-T;
EXPCT:=PRB*NGAPS;

* DIF:=EXPCT-SGAP[I];
CHI:=CHI+DIF*DIFIEKPCT;
T:=T*Q;

* . WRITELN(PR,I:4,SGAP[I] :6,EXPCT:6:1,DIF:6:1);
END;

WRITELN(PR);
WRITELN(PR);
WRITELN(PR,'DEGREES OF FREEnOM=8 CHISQUARE=',CHI:6:S);
WRITELN(PR,'PROBABILITY OF CHANCE OCCURRENCE=',PROB(4,CHI/2.O):6:4)

END;

PROCEDURE POKERTEST;
VAR I,N:INTEGER;

* CHI,DIF :REAL;

EXPC:ARRAY[1..51 OF REAL;

p BEGIN
HEADING;
CHI:=O;
N:= NT DIV 5;
EXPCII1I:= O.0016*N;b EXPC[21 :=O.096*N;
EXPC[3I:O.48*N;
EXPC[4] :O.384*N;
EXPC[51 :O.0384*N;
UNDRLNON;
WRITELN(PR, "'POKER" TEST')'

* UNDRLNOFF;
FOR 1:=l TO 3 DO WRITELN(PR);

- WRITELN(PR,'A TOTAL OF 'N:4,' HANDS OF 5 RND DIGITS EACH ARE FORMED AND');
WRITELN(PR,'TESTED FOR THE EXPCTD FREQ OF OCCURENCE OF 1 THRU 5 DIFF DIG');
WRITELN(PR);
WRITELN(PR,' I FREQ EXPC DIFF');

* FOR I:=1 TO 5 DO
BEGIN
DIF:=EXPCIII-SPOKII;
CHI:=CHI+DIF*DIF/EXPC[I];
WRITELN(PR,I:2,SPOK[IJ:6,EXPC[IJ:6:1,DIF:6:1);

END;
* WRITELN(PR);

WRITELN(PR,'DEGREES OF FREEDOM=4 CHISQUARE=',CHI:6:3);
WRITELN(PR,'PROBAEILITY OF CHANCE OCCURRENCE=',PROB(I,CHI/2.0):6:4)

32

END;

PROCEDURE PAIRS(L: INTEGER); (*OBTAINS RANDOM PAIRS*)b

BEGIN
IF PAIRKO THEN
BEGIN

COL: =L:
SPAIRS[ROW)GOL] :=SPAIRS[RQW,COLI+1:

END
ELSE ROW:=L;
PAIR: =-PAIR

END;

PROCEDURE TRIOS(Y:REAL); (*OBTAINS RANDOM TRIOS*)
R MI,MA,L,J :INTEGER;

BEG IN
PERMtTRIO] :=Y;
TRIO: =TRIO+1;
IF TRIO=-4 THEN
BEGIN

IF (PERMII](PERME2I) AND (PERMf1]'3'ERMj3]) THEN
BEG IN

MT:=1;
IF PERM[2]>PERM[3] THEN MA:=2 ELSE MA:=3;

END
ELSE
BEGIN

IF (PERM[1I>PERM[2]) AND (PERM[11J>PERM[3]) THEN
BEGIN

MA:=1;
IF PERMI2]<PERMI3] THEN MI:=2 ELSE MI:=3;

ELSEDi
IF(PERM[1]>PERM[21) AND (PERM[1](PERM[3]) THEN
BEGIN

MI:=2; L
MA:=3;

END
ELSE

BEGIN
MI:=3;

33

END;
END;

END;
CASE MI OF

1: IF MA=2 THEN TJ:=2 ELSE TJ:=1;
2: IF HA=3 THEN TJ:=3 ELSE TJ:=5;
3: IF MA=1 THEN TJ:=6 ELSE TJ:=4;

END;
SPERM[TJ] :=SPEP.M[TJ]+1;
TRIO: =1;

END
END;

PROCEDURE TRIOTEST;
VAR I,d:INTEGER;

CHI,DIF,EXPCT:REAL;
BEGIN

HEADING;
UNDRLNON;
WRITELN(PR ,'TEST FOR FREQ OF OCCURRENCE OF RANDOM PERMUT OF DIGIT TRIPLETS');
UNDRLNOF F;
WRITELN(PR);
GHI:=O;
EXPCT:=TTRIO/18.O;
J:=TRUNC(EXPCT*6.O);
WRITELN(PR,'THERE ARE 6 DIFF PERMUTNS OF DIGITS IN A TRIPLET. A TOTAL OF');
WRITELN(PR,'J:4,' TRIOS ARE FORMD, EACH PERM WITH EXPCTD FREQ OF',EXPCT:5:1);
WRITELN(PR,"'DIF" IS THE DIFFERENCE BETWEEN EXPCTD AND OBSERVD FREQUENCIES');
WRITELN(PR);
WRITELN(PR,' TRIO FREQ DIFF');
FOR I:=1 TO 6 DO

BEG IN
CASE I OF

I :WRITE(PR, '(123)');
2:WRITE(PR, '(132)');
3:WRITE(PR, '(213)');
4:WRITE(PR, '(231)');
5:WRITE(PR,'(312)');
6 :WRITE (PR. '(321)');

END;
DIF :=EXPCT-SPERMj I];
CHI: =CHI+DIF*DIF;
WRITELN(PR,SPERMII:6,DIF:6:1);

END;L
WRITELN(PR);
WRITELN(PR);

34

CHI: =CHI/EXPCT;
WRITELN(PR,'DEGREES OF FREEDOM=5 CHISQUARE=' ,CHI:8:4);'
WRITELN(PR,'PROBABILITY OF CHANGE OCCURRENCE=',PROB92.5,CHI/2.O):6:4)p

END;

PROCEDURE PAIRTEST;
VAR I,J,N1:INTEGER;

CHI,EXPCT,DIF:REAL;

BEGIN
HEADING;
CHI:=O;
NI:=TRUNC(NT/2.O);
EXPCT:=N1/100.O;5
UNDRLNON;
WRITELN(PR,'TEST FOR DISTRIBUTION OF RANDOM PAIRS');
UNDRLNOF F;
FOR I:=1 TO 3 DO WRITELN(PR);
WRITELN(PR,'A TOTAL OF 7, N1:5,' PAIRS OF 10 RANDOM DIGITS (0 THRU 9)

ARE');j
WRITELN(PR,'FORMED AND DISTRIBUTED INTO 100 FREQUENCY BINS. THE EXPCTD');
WRITELN(PR,'NUMBER OF PAIRS IN EACH BIN IS ',EXPCT:4:1,' . THE TEST');
WRITELN(PR,'USES THE CHI SQ STAT TO CALC THE PROB OF CHANCE OCCURRENCE');
WRITELN(PR,'OF THE OBSERVED FREQUENCY DISTRIBUTION');
WRITELN(PR);
W'RITELN(PR);
WRITELN(PR,' BINS');
WRITE(PR,'
FOR I:=O TO 9 DO WRITE(PR,I:5);
FOR 1:=1 TO 2 DO WRITELN(PR);
FOR I:=O TO 9 DO

BEGIN
WRITE(PR, 1:5);
FOR J:=O TO 9 DO

BEG IN
WRITE(PR,SPAIRS[I,J] :5);
DIF:= EXPCT-SPAIRSII,J]
CHI:=CHI+DLF*DIF;

END;
WRITELN(PR);

END;
FOR I:1l TO 3 DO WRITELN(PR);
CHI: aCHI/EXPCT;
WRITELN(PR, 'DEGREES OF FREEDGM-99 CHISQUARE-'CHI: 4:1);
WRITELN(PR,'PROBABILITY OF CHANCE OCCURRENCE-'PROB(44.5,CHI/2):6:4);

35

PROCEDURE SERIALTEST;
VAR N,N1,I:INTEGER;

A,B,C ,D,EXPCT,SD,T,PRB:REAL;

BEG IN
HEADING;
N:=MAXPRIME-1;
Ni :=MAXPRIME-2;
A:=S1*S1;
B :=A*A;
C:=S2*S2;
D:=A-S2;
D: =D* D;
EXPCT:=(A-S2)/N;
SD:=SQR.T((S+B4Sl(3S*2)CS-4/Np/N/)
UNDRLNON;
WRITELN(PR,'SERIAL CORRELATION TEST FOR LAGS 1 THRU 10');
UNDRLNOFF;
FOR I:=1 TO 3 DO WRITELN(PR);
WRITELN(PR,'NON-CIRCUIAR SERIAL CORR BETWEEN THE FIRST ',N+1:5,' VARIATES');
WRITELN(PR);
WRITELN(PR,'THE OBSERVED MOMENTS ARE');
WRITELN(PR,'Sl='S1:9:4,' S2=',S2:9:4);
WRITELN(PR,'S3='S3:9:4,' S4=',S4:9:4);
FOR I:=l TO 3 DO WRITELN(PR);
WRITELN(PR,'THE EXPECTED VALUE OF CORR SUMS IS ',EXPCT:6:4);
WRITELN(PR,'THE EXPECTED ST DEV OF CORR SUMS IS ',SD:6:4);
WRITELN(PR);
WRITELN(PR,"LAG CORRSUM T PROB');
FOR I:=l TO 10 DO
BEGIN

T:=(EXPCT-SSER[11)/SD;
PRB:=2*CNORMAL(ABS(T)); .
WRITELN(PR,I:3,SSERI1I:9:4,T:8:4,PRB:8:4);

END
END;

(**MAIN PROGRAM**)

BEGIN
REWRITE(PR,'PRINTER:'); (*ENABLE PRINTER*)
WRITE('HOW MANY TRIALS?')
READLN(NT);
N:=NT-1;
WRITE ('HOW MANY BINS FOR FREQUENCY TEST (NFREQ<1O1)?')
READL(NFREQ); 3

WRITE('MAX PRIME NUMBER FOR SERIAL TEST?(MAXPRIME<NTRIALS-9)')
READ LN(4AXP RIME);
INITIAL;
TPAIR:=2*TRUNG(NT/2 .0);
TTRIO:=3*TRUNC(NT/3.O);
TPOK:=5*TRUNC(NT/5.0);
TFREQ:=NFREQ*TRUNG(NT/NFREQ);
TSER:=MAXPRIME+1O;
FOR I:0O TO N DO

BEG IN
X:=RND;
WRITELN(I); (*SCREEN VISIBLE REM4INDER*)
MOMENTS (I,X); (*1ST THRU 4TH MOMENTS*)
GAPS(X);(*COLJNT OCCURRCES OF O.3<X<O.6*)
JF:= TRU NC (NF REQ*X);
IF I<TFREQ THEN SFREQ[JFI:=SFREQ[JFI+1;(*DISTR VARIATES INTO NFREQ BINS*)
IF I<TPAIR THEN PAIRS(TRUNC(1O.O*X)); (*DISTR DIGIT PAIRS INTO 100 BINS*)
IF I<TTRIO THEN TRIOS(X);(DISTRB TRIPLETS INTO 6 CATEGORIES*)
IF 1<TPOK THEN POKER(TRUNC(5.O*X));(*DISTRB POKER HANDS INTO 5 CATEG*)
IF I<TSER THEN SERIAL(I,X); (*FORM SERIAL CORR PRODS, LAGS 1 TO 10*)

END;
NSDTEST; (*MEAN AND SDEV TESTS*)
FREQKOLTEST; (*CHISQ FREQ DISTR AND KOLMOGOROFF-SMIRNOV TESTS*)
PAIRTEST; (*TEST DISTR OF RANDOM PAIRS*)
TRIOTEST; (*TEST DISTR OF RANDOM PERMUTATIONS OF TRIOS*)
GAPTEST; (*TEST GAPS FOR VARIATES THAT FALL OUTSIDEO.3<X<.6*)
POKERTEST; (*TEST DISTR OF POKER HANDS (5 RANDOM DIGITS)*)
SERIALTEST; (*SERIAL CORR TEST FOR LAGS 1 THRU 10*)
FOR I:-l1 TO 2 DO WRITE(PR,GHR(ORD)12)))

37

PROGRAM TESTRUNS: (*2 MAR 1983 TESTS MODIFIED RUNS UP AND DOWN

AND TOTAL NUMBER OF ORDINARY RUNS*)

USES TRANSCEND;

TYPE SUMCASES=ARRAY[I..6] OF INTEGER;

VAR
NT,I,IJ,STUP,STDW -INTEGER;
RND,XR,LOUPOR,LODWOR,LOUPMDLODWMD :REAL;

CHIUP,CHIDW,PRB :REAL;

CTUPOR,CTUPMD,CTDWORCTDWMD :INTEGER;
SEED,MASK :PACKED ARRAY[O..3] OF 0..255;

SUPOR,SUPMD,SDWOR,SDWMD :ARRAY[I..6] OF INTEGER;
PR :TEXT;

PROCEDURE RNUM;
EXTERNAL;

FUNCTION RND: REAL;
BEGIN

RNUM;
RND:=RNB-1 .0

END;

FUNCTION CNORMAL(Y:REAL) :REAL; (*COMPLEMENT OF NORMAL PROB*)
VAR T,Q:REAL;

BEGIN
*_ T:=i/(+0.33267*ABS(Y));

Q:=0.3989422*T*((0.937298*T-0.1201676)*T+O.4361836);
Q:=LN(Q)-0.5*Y*Y;

IF Q>-87 THEN Q:=EXP(Q) ELSE Q:O;
IF Y>O THEN CNORMAL:=Q ELSE CNORMAL:=1-Q

END;@

FUNCTION PROB(G,Z:REAL) :REAL; (*PROB OF CHI-SQUARE*)
VAR N,I: INTEGER;

-"S,T,X,Y: REAL;

BEGIN

IF G<30 THEN
BEGIN

38

, ' .. C *.

N:=TRUNC(G);

IF G-N>O THEN
BEGIN

X:=Z+Z;
Y:=SQRT(X);
IF N>O THEN
BEGIN
WHILE I<N DO
BEG IN

S:=S+T;
T:=T*X/(I+I+1);

END;
S :=LN(S*Y)-Z-O.225791;
IF S>-87 THEN S:=EXP(S) ELSE S:=O;

END; (*OF WHILE*)
PROB :2*CNORMAL(Y)+S;

END
ELSE
BEGIN

WHILE I<N DO
BEGIN
T:=T*Z/I;
S:ST
I:=1+1;

END; (*OF WHILE*)

IF S>-87 THEN PROB:=EXP(S) ELSE PROB:inO;
END;

END
ELSE

BEGIN
T:-9*G;
X:-(EXP(LN(Z/G)/3)-1+1/T)*SQRT(T);
X:.X+(((O.OO9191*X-O.OO4772)*X-O.O26868)*X+O.OO445)/G;
PROB:=CNORMAL(X;

END
END;

PROCEDURE UNDRLNON; (*UNDERLINE MODE ON*)

BEGIN

39

WRITE(PR,CHR(ORD(27)),CHR(ORD(45)),CHR(ORD(1)))
END;

PROCEDURE UNDRLNOFF; (*UNDERLINE MODE OFF*)

BEGIN
WRITE(PR,CHR(ORD(27))),CHR(ORD(45)),CHR(ORD(O)))

END;

PROCEDURE HEADING;
VAR I:INTEGER;

BEGIN

WRITE(PR,CHR(ORD(12))); (*PAGE*)
FOR I:=1 TO 3 DO WRITELN(PR);
WRITE(PR,CHR(ORD(14)));
WRITELN(PR," TESTING A UNIT RANDOM NUMBER GENERATOR');
WRITELN(PR);
WRITELN(PRJTHERE ARE ',NT:5," RANDOM VARIATES AVAILABLE');

WRITELN(PR);
UNDRLNON;
WRITELN(PR,7RUNS TEST-);
UNDRLNOFF;
FOR I:=1 TO 3 DO WRITELN(PR);

WRITELN(PR,-A RUN CONSISTS OF R CONSECUTIVE VARIATES EACH LARGER-);
WRITELN(PR,7OR SMALLER THAN THE PREVIOUS ONE. FOR ORDINARY (ORD) RUNS-);
WRITELN(PR,7ALL RNUMBERS ARE USED. FOR MODIFIED (MOD) RUNS, THE RNUMBER');
WRITELN(PR,-THAT INTERRUPTS A RUN IS THROWN OUT. IN MOD RUNS, THE PROBAB');
WRITELN(PR,-OF A RUN OF LENGTH R IS [I/R!-I/(R+1)!] . A CHI SQUARE TEST');
WRITELN(PR,- IS PERFORMED USING THE DIFS BETWEEN ACTUAL AND EXPECTED MOD);
WRITELN(PR,-RUNS. ONLY RUNS FROM 1 TO 5 AND >5 IN LENGTH ARE EXAMINED');

WRITELN(PR)
END;

PROCEDURE AUX(UP,ORD:BOOLEAN;VAR CT:INTEGER;VAR LO:REAL;VAR SUM:SUMCASES);
(*UPDATES SUMS FOR ALL CASES OF RUNS AND MODES*)

VAR L,X :REAL;

BEGIN
IF UP=TRUE THEN

BEGIN
4L:=LO;

X:=XR;
END

40

...,. :...,*_... -,- --. - .- : . . - .: - ' ,4..

ELSE
BEG IN

L: = LO;
X: =-XR;

E ND;
IF X>L THEN CT:=CT+1;
IF (CT=6) OR (IJ=NT) OR (X<L) THEN

BEGIEN
SUM[CT] :=SUM[CT]+1;
CT:=1;

END;
IF (ORD=TRUE) OR (CT>1) THEN LO:=XR
ELSE IF UP-TRUE THEN STUP:=STUP+l ELSE STDW:=STDW+l

E ND;

PROCEDURE START;
VAR I: INTEGER;

BEGIN
FOR 1:=1 TO 6 DO

BEG IN
SUPOR[1J :=O;

- . SUPMD[l]:=O;

SDWOR[1] :=O;
SDWMD[1]:=O;

END;
CTUPOR:=1;
CTUPMD:=1;
CTDWOR:=1;
CTDWMD:=1;
XR :=RND;
LOUPOR:=XR;
LOUPMD:=XR;
LODWOR:=XR;
LODWMD:=XR;
STUP:=O;
STDW:=O

END;

PROCEDURE SUMRUNS; (*FORMS THE SUMS OF UP AND DOWN RUNS FOR ORDINARY
AND MODIFIED CASES. IN MOD CASES, THE RINUMBER THAT BREAKS A RUN IS THROWN
OUT. CONSECUTIVE RUNS OF 1 THRU 5 AND >5 ARE ANALYZED*)

VAR I :INTEGER;

41

BEGIN
START;
FOR IJ:=2 TO NT DO

BEGIN
WRITELN(IJ); (*SCREEN REMINDER*)
XR:=RND;
AUX(TRUE,TRUE ,CTUPOR,LOUPOR,SUPOR) ; ('ORDI~kRY UP RUNS*)
AUX(FALSE,TRUE ,CTDWOR,LODWOR,SDWOR) ; QORDINARY DOWN RUNS*)
IF STUP>O THEN

BEGI N
CTUPMD:1I;
LOUPMD:=XR;
STUP:=O;

END
ELSE AUX(TRUE ,FALSE ,CTUPMD,LOUPMD, SUPMD); (*MODIF UP RUNS*)
IF STDW>O THEN

BEGIN
CTDWMD:=1;
LODWMD: =XR;
STDW:=O;

END
ELSE AUX(FALSE ,FALSE,CTDWMD,LODWMD,SDWMD); (*MODIF DOWN RUNS*)

END
END;

PROCEDURE PRINTANS; (*PRINTS CHISQ COMPUT*)

BEGIN
WRITELN(PR);
PRB:PROB(3 ,CHIUP/2);
WRITELN(PR,-DEGREES OF FREEDOM6D;
WRITELN(PR,-CHISQ UP=',CHIUP:8:4,(PROB OF CHANCE OCCRC=',PRB:6:4);

V WRITELN(PR);
PRB:=PROB(3,CHIDW/2);
WRITELN(PR7-CHISQ DOWN=',CHIDW:8:47' PROB OF CHANCE OCCRCS',PRB:6:4)

END;

PROCEDURE RUNSTEST; (*TEST UP,DOWN RUNS FOR MODIFIED CASES AND TOTAL NUMBER OF
ORDINARY RUNS*)

*VAR I,J,SUMUP,SUMDW :INTEGER;
T,EXPCTUP,EXPCTDW,DIFUP,DIFDW :REAL;

a BEGIN
HEADING;
WRITELN(PR7-RESULTS FOR ORDINARY RUNS-);

42

FOR I:=1 TO 2 DO WRITELN(PR);
WRITELN(PR,'RUN UPSUMS DWSUMS');
FOR I:=1 TO 6 DO WRITELN(PR,I:3,SUPOR[I]:7,SDWOR[I]:7);
FOR I:=1 TO 3 DO WRITELN(PR);

7 WRITELN(PR,' RESULTS OF MODIFIED RUNS TEST FOLLOW);
C-WRITELN(PR,'RUN EXPUP ACTUP DIP EXPDW ACTDW DIF');
- . SUMUP:=O;

SIJMDW:=O;
* CHIUP:=O;

CHIN: =0;
* FOR I:=I TO 6 DO

BEGIN
SUMUP:=SUMUP+SUPMD[I];
SUMDW:=SUMDW+SDWMD~L];

END;
4 FOR 1:=l TO 6 DO

BEGIN

FOR J:=1 TO I+1 DO T:=T*J;
IF 1<6 THEN PRB:=I/T ELSE PRB:=(I+1)/T;
EXPCTIP: =pRM*5jJUp;
EXPCTDW: =PRB*SUMDW;
DIFUP:=EXPCTUP-SUPMD[I];
DIFDW:=EXPCTDW-SNWrn II;
CHIUP:=CHIUP+DIFUP*DIFUP/EXPCTUP;I
CHINW:=CHIDW+DIFDW*DIFDW/EXPCTDW;
WRITE(PR,I:3,EXPCTUP:8:1,SUPMD[I]:6,DIFUP:8:1,EXPGTDW:8:1);
WRITELN(PR,SDWMDIII:6,DIFDW:B:1);

END;
PRINTANS

END;I
(******MAIN PROGRAM *****

BEGIN
REWRITE(PR,'PRINTER:'); (*ENABLE PRINTER*)

WRITE('HOW MANY TRIALS? ';-

RUN STE ST;
FOR I:=1 TO 2 DO WRITE(PR,CHR(ORD(12))) U'NEW PAGE*)

END.

43I

APPENDIX C

FREQUENCY DISTRIBUTION AND KOLMOGOROFF-SMIRNOV TEST

10,000 VARIATES ARE DISTRIBUTED INTO 100 BINS. EXPECTED

FREQUENCY IS 100. "DIF"=EXPECTED-ACTUAL FREQUENCY. 'KOL' IS THE

DIFFERENCE BETWEEN EXPECTED AND ACTUAL CUMULATIVE FREQUENCY.

BIN OBS DIF CUM KOL BIN OBS DIF CUM KOL

0 94 6.0 0.0094 0.0006 34 92 8.0 0.3511 -0.0011

1 113 -13.0 0.0207 -0.0007 35 97 3.0 0.3608 -0.0008

2 101 -1.0 0.0308 -0.0008 36 94 6.0 0.3702 -0.0002

3 89 11.0 0.0397 0.0003 37 105 -5.0 0.3807 -0.0007

4 112 -12.0 0.0509 -0.0009 38 108 -8.0 0.3915 -0.0015

5 96 4.0 0.0605 -0.0005 39 110 -10.0 0.4025 -0.0025

6 99 1.0 0.0704 -0.0004 40 94 6.0 0.4119 -0.0019

7 90 10.0 0.0794 0.0006 41 98 2.0 0.4217 -0.0017

8 0 10.0 0.0884 0.0016 42 91 9.0 0.4308 -0.0008

9 86 14.0 0.0970 0.0030 43 88 12.0 0.4396 0.0004

10 122 -22.0 0.1092 0.0008 44 110 -10.0 0.4506 -0.0006

11 99 1.0 0.1191 0.0009 45 110 -10.0 0.4616 -0.0016

12 123 -23.0 0.1314 -0.0014 46 102 -2.0 0.4718 -0.0018

13 99 1.0 0.1413 -0.0013 47 84 16.0 0.4802 -0.0002

14 98 2.0 0.1511 -0.0011 48 110 -10.0 0.4912 -0.0012 1

15 92 8.0 0.1603 -0.0003 49 106 -6.0 0.5018 -0.0018

16 94 6.0 0.1697 0.0003 50 118 -18.0 0.5136 -0.0036

17 97 3.0 0.1794 0.0006 51 104 -4.0 0.5240 -0.0040

18 109 -9.0 0.1903 -0.0003 52 94 6.0 0.5334 -0.0034

19 101 -1.0 0.2004 -0.0004 53 112 -12.0 0.5446 -0.0046

20 Ii -11.0 0.2115 -0.0015 54 107 -7.0 0.5553 -0.0053

21 108 -8.0 0.2223 -0.0023 55 99 1.0 0.5652 -0.0052

22 130 -30.0 0.2353 -0.0053 56 95 5.0 0.5747 -0.0047

23 103 -3.0 0.2456 -0.0056 57 80 20.0 0.5827 -0.0027

24 99 1.0 0.2555 -0.0055 58 115 -15.0 0.5942 -0.0042

25 80 20.0 0.2635 -0.0035 59 97 3.0 0.6039 -0.0039

26 89 11.0 0.2724 -0.0024 60 102 -2.0 0.6141 -0.0041

27 92 8.0 0.2816 -0.0017 61 101 -1.0 0.6242 -0.0042

28 100 0.0 0.2916 -0.0016 62 85 15.0 0.6327 -0.0027

29 91 9.0 0.3007 -0.0007 63 103 -3.0 0.(43(-0.0030

30 102 -2.0 0.3109 -0.0009 64 96 4.0 0.6526 -0.0026

31 97 3.0 0.3206 -0.0006 65 100 0.0 0.6626 -0.0026

32 120 -20.0 0.3326 -0.0026 66 118 -18.0 0.6744 -0.0044

33 93 7.0 0.3419 -0.0019 67 108 -8.0 0.6852 -0.0052

45

APPENDIX C (CONCLUDED)

FREQUENCY DISTRIBUTION AND KOLMOGOROFF-SMIRNOV TEST

10,000 VARIATES ARE DISTRIBUTED INTO 100 BINS. EXPECTED
FREQUENCY IS 100. "DIF"=EXPECTED-ACTUAL FREQUENCY. 'KOL' IS THE

DIFFERENCE BETWEEN EXPECTED AND ACTUAL CUMULATIVE FREQUENCY.

BIN OBS DIF CUM KOL

68 97 3.0 0.6949 -0.0049
69 97 3.0 0.7046 -0.0046
70 98 2.0 0.7144 -0.0444
71 101 -1.0 0.7245 -0.0045
72 86 14.0 0.7331 -0,00t.
73 108 -8.0 0.7439 -0.0039
74 101 -1.0 0.7540 -0.0040
75 98 2.0 0.7638 -0.0038
86 90 11.0 0.7727 -0.0027
77 79 21.0 0.7806 -0.0006
78 92 8.0 0.7898 0.0002
79 116 -16.0 0.8014 -0.0014
80 102 -2.0 0.8116 -0.0016
81 136 -36.0 0.8252 -0.0052

82 88 12.0 0.8340 -0.0040
83 106 -6.0 0.8446 -0.0046
84 112 -12.0 0.8558 -0.0058
85 101 -1.0 0.8659 -0.0059
86 102 -2.0 0.8761 -0.0061
87 92 8.0 0.8853 -0.0053
88 91 9.0 0.8944 -0.0044
89 93 7.0 0.9037 -0.0037
90 107 -7.0 0.9144 -0.0044
91 104 -4.0 0.9248 -0.0048
92 81 19.0 0.9329 -0.0029
93 115 -15.0 0.9444 -0.0044
94 79 21.0 0.9523 -0.0023
95 92 8.0 0.9615 -0.0015
96 96 4.0 0.0711 -0.0011
97 100 0.0 0.9811 -0.0011
98 97 3.0 0.9908 -0.0008

99 92 8.0 1.0000 0.0000

46

II

APPENDIX D

OBSERVED DISTRIBUTION OF RANDOM PAIRS

BINS

0 1 2 3 4 5 6 7 8 9

0 53 54 34 50 42 50 52 43 38 49

1 58 59 57 47 47 47 44 59 39 50

2 40 52 48 49 51 S2 56 47 44 47

3 48 45 50 53 43 49 57 56 59 60

4 45 54 63 49 53 50 54 51 43 50

5 57 50 59 52 60 55 53 41 39 51

6 40 62 54 48 46 46 47 58 60 51

7 57 40 54 45 39 52 48 38 46 44

8 65 62 46 51 54 51 49 61 62 50

9 42 49 52 54 46 52 35 51 42 44

47

lllz-W7 17,1 - Ifm 1 7lvl ol -

FILMED

8-85

DTIC

